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Abstract
Room temperature Bose–Einstein condensation (BEC) of magnons in YIG films under
microwave driving has been recently reported. We present a theory for the interacting magnon
gas driven out of equilibrium that provides rigorous support for the formation of the BEC. The
theory relies on the cooperative mechanisms created by the nonlinear magnetic interactions and
explains the spontaneous generation of quantum coherence and magnetic dynamic order when
the microwave driving power exceeds a critical value. The results fit very well the experimental
data for the intensity and the decay rate of Brillouin light scattering and for the microwave
emission from the BEC as a function of driving power.

1. Introduction

A brief account is presented of a theoretical model [1] for the
formation of Bose–Einstein condensation (BEC) of magnons
at room temperature in films of yttrium–iron garnet (YIG)
driven by microwave radiation and its application to interpret
the experiments of Demokritov and co-workers [2–6]. BEC
occurs when a macroscopic number of bosons occupies the
lowest available energy quantum states and has been observed
in a few physical systems at very low temperatures [7]. The
room temperature experiments of [2–6] have realized earlier
proposals for producing BEC of magnons [8] and demonstrated
powerful techniques for observing its properties.

The experiments were done at room temperature in
epitaxial crystalline YIG films magnetized by in-plane fields.
In these films the combined effects of the exchange and
magnetic dipolar interactions among the spins produce a
dispersion relation (frequency ωk versus wavevector k) for
magnons that has a minimum ωk0 at k0 ∼ 105 cm−1. Magnons
are driven parametrically by microwave pulses with frequency
fp and studied by Brillouin light scattering (BLS) [2–4]. The
experiments show that, when the microwave power exceeds a
threshold value, there is a large increase in the population of
the magnons with frequencies in a narrow range around fp/2.
Then the energy of the magnons quickly redistributes through
modes with lower frequencies down to the minimum frequency
fmin = ωk0/2π as a result of magnon scattering events. This
produces a hot magnon gas that remains decoupled from the

lattice for some time due to the long spin–lattice relaxation
time.

However, if the microwave power exceeds a second
threshold value, much larger than the one for parallel pumping,
the magnon population evolves to condense in a narrow region
in phase space around the minimum frequency and develops
quantum coherence [3, 4]. The coherence of the magnon
condensate is also demonstrated by the microwave emission
from k ≈ 0 magnons created by BEC magnon pairs in
experiments with the applied field such that the frequency of
the k ≈ 0 magnon is ω0 = 2ωk0 [5, 6]. The theoretical model
presented here provides rigorous support for the formation
of the BEC of magnons in YIG films magnetized in the
plane and driven by microwave radiation. The theory relies
on cooperative mechanisms made possible by the nonlinear
magnetic interactions and explains the spontaneous generation
of quantum coherence and magnetic dynamic order in a
macroscopic scale when the microwave driving power exceeds
a critical value. The results fit very well the experimental BLS
and microwave emission data.

2. Microwave excitation of magnons in thin films

The interacting boson gas can be treated with second
quantization of the spin excitations with wavevector k and
frequency ωk described by magnon creation and annihilation
operators c+

k and ck . The Hamiltonian for the system pumped
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by a microwave field can be written as

H = H0 + Hint + H ′(t), (1)

where H0 = h̄
∑

ωkc+
k ck is the unperturbed Hamiltonian,

Hint represents the nonlinear interactions and H ′(t) the
external microwave driving. The magnetic Hamiltonian
is dominated by Zeeman, exchange and magnetic dipolar
contributions [9]. As is well known the eigenstates |nk〉
of the free Hamiltonian H0 and of the number operator
nk = c+

k ck can be obtained by applying integral powers
of the creation operator to the vacuum. These states have
precisely defined numbers of magnons nk and uncertain
phase and are used in nearly all quantum treatments of
thermodynamic properties, relaxation mechanisms and other
phenomena involving magnons. However, they have zero
expectation value for the small-signal transverse magnetization
operators mx and m y , defined by �M = ẑMz + x̂mx + ŷm y , and
therefore do not have a macroscopic wavefunction.

The states that correspond to classical spin waves are
the coherent magnon states [10, 11], defined in analogy to
the coherent photon states [12]. A coherent magnon state is
the eigenket of the circularly polarized magnetization operator
m+ = mx + im y . It can be written as the direct product of
single-mode coherent states, defined as the eigenstates of the
annihilation operator, ck |αk〉 = αk |αk〉, where the eigenvalue
αk is a complex number. Although the coherent states are not
eigenstates of the unperturbed Hamiltonian and as such do not
have a well-defined number of magnons, they have nonzero
expectation value for the magnetization m+ ∝ |αk | and a well-
defined phase. The coherent state |αk〉 can be expanded in
terms of the eigenstates |nk〉 and has an expectation value for
the number operator 〈nk〉 = |αk |2. The coherent states are not
orthogonal to one another, but they form a complete set, so they
can be used as a basis for the expansion of an arbitrary state.
In order to study the coherence properties of a magnon system,
it is convenient to use the density matrix operator ρ and its
representation as a statistical mixture of coherent states:

ρ =
∫

P(αk)|αk〉〈αk | d(Re αk) d(Im αk), (2)

where P(αk) is a probability density. As shown by
Glauber [12], if ρ represents a thermal distribution, P(αk) is
a Gaussian function, and if ρ corresponds to a coherent state,
P(αk) is a Dirac δ function.

Spin waves can be nonlinearly excited in a magnetic
material by means of several techniques employing microwave
radiation, with the microwave magnetic field applied either
perpendicular or parallel to the static field. In the parallel
pumping process the driving Hamiltonian in equation (1)
follows from the Zeeman interaction of the microwave
pumping field ẑh cos(ωpt) with the magnetic system. One
can express the Zeeman interaction in terms of the magnon
operators, keeping only terms that conserve energy and show
that the driving Hamiltonian for a ferromagnetic film is given
by [1]

H ′(t) = (h̄/2)
∑

k

hρke−iωpt c+
k c+

−k + h.c., (3)

where ρk = γωM [(1 − Fk) sin2 θk − Fk]/4ωk represents
the coupling of the pumping field h (frequency ωp) with the
�k,−�k magnon pair with frequency ωk equal or close to ωp/2,
ωM = γ 4π M , M is the saturation magnetization, γ = gμB/h̄
is the gyromagnetic ratio (2.8 GHz kOe−1 for YIG), Fk =
(1 − e−kd)/kd is a form factor, d is the film thickness and θk is
the angle between the wavevector �k in the plane and the field.
For a thick film or bulk sample the coupling is maximum for
θk = 90◦ and vanishes for θk = 0. However, in films with kd
of the order of 1 or less, Fk is finite and the parallel pumping
field can drive waves with any value of θk as in the experiments
of [2–6].

The Heisenberg equations of motion for the operators ck

and c+
k with the Hamiltonian H = H0 + H ′(t) can be easily

solved for a pumping field h applied at t = 0. The solution
shows that, if the field exceeds a critical value hc, the number
of parametric magnons increases exponentially in time. At
large enough values the magnon population saturates due to
nonlinear four-magnon interactions that can be represented by
the Hamiltonian [9, 13]

H (4) = h̄
∑

k,k′
( 1

2 Skk′ c+
k c+

−kck′ c−k′ + Tkk′ c+
k c+

k′ ckck′), (4)

where the interaction coefficients are determined mainly by
the dipolar and exchange energies. For the k values relevant
to the experiments the exchange contribution is negligible so
that the coefficients in equation (4) are given approximately by
Skk′ = 2Tkk′ = 2ωM/N S, where N is the number of spins S
in the sample. Using the Hamiltonian (1) with equations (3)
and (4) as the driving and interaction terms one can write
the equations for the operators ck and c+

k from which several
quantities of interest can be obtained. One of them is the
correlation function σk = 〈ckc−k〉 = nkeiϕk e−i2ωk t [13], where
nk is the magnon number operator and ϕk is the phase between
the states of the pair. It can be shown that, for h > hc,
the steady-state population of the parametric magnon pairs
is [13, 14]

〈nk〉ss = [(hρk)
2 − η2

k]1/2 − |�ωk |]/2V(4), (5)

where V(4) = Skk + 2Tkk = 4ωM/N S, �ωk = ωk − ωp/2
is the detuning from the frequency of maximum coupling
and ηk is the magnon relaxation rate that was introduced
phenomenologically in the equations of motion. It can also be
shown that the phase ϕk varies from −π/2 to π as h increases
from hc to infinity. In the range of powers used in [2–6]
ϕk ∼ −π/2.

Equation (5) shows that magnon pairs with frequency in
a narrow range around ωp/2 are pumped by the microwave
field when h > hc = (η2

k + �ω2
k)

1/2/ρk . Note that, for
ωk = ωp/2, hc = ηk/ρk . In the reported experiments the
minimum hc corresponds to a critical power pc in the range of
100 μW–1 mW determined by the experimental geometry and
the spin–lattice relaxation rate in YIG, ηSL ∼ 2 × 106 s−1 [3].
However, when very short microwave pulses are used, much
higher power levels are required to reduce the rise time and to
build up large magnon populations. In this case the relaxation
rate that prevails in the dynamics is dominated by magnon–
magnon scattering ηm ∼ 25ηSL = 5 × 107 s−1 [1], so one can

2



J. Phys.: Condens. Matter 22 (2010) 164211 S M Rezende

define a critical field hc1 = ηm/ρk = hcηm/ηSL for driving
magnons out of equilibrium from the magnon heat bath. Since
the driving power p is proportional to h2, one can write from
equation (5) an expression for the steady-state total number of
parametric magnons with ωk ≈ ωp/2:

Np = rpnH [(p − pc1)/pc1]1/2, (6)

where nH ≡ ηm/2V(4) = ηm N S/8ωM and rp is a factor that
represents the number of pumped modes weighted by a factor
relative to the number of magnons of the mode with maximum
coupling.

3. The model for the dynamics of BEC in the
microwave-driven interacting magnons

In the experiments of [2–6] magnon pairs are parametrically
driven by parallel pumping in a YIG film at large numbers
compared to the thermal values. The population of these
magnons is quickly redistributed over a broad frequency range
down to the minimum frequency due to four-magnon scattering
events which conserve the total number of magnons. Since
the spin–lattice relaxation time in YIG is much longer than the
intermagnon decay time a quasi-equilibrium hot magnon gas
is formed that remains decoupled from the lattice for several
hundred ns with an essentially constant number of magnons.
Thus, assuming that the system is in quasi-equilibrium and
neglecting the interaction between magnons, the occupation
number of the state with energy h̄ω at temperature T is given
by the BE distribution

nBE(ω,μ, T ) = 1/{exp[(h̄ω − μ)/kBT ] − 1}, (7)

where μ is the chemical potential. Considering that the
number of magnons Np pumped into the system by the
microwave driving is much larger than the thermal number in
the frequency range from ωk0 to ωp/2, we can write Np =∫

D(ω)nBE(ω,μ, T ) dω, where D(ω) is the magnon density
of states and the integral is carried out over the range ωp/2 −
ωk0. As the microwave power is raised, the total number of
magnons increases and the chemical potential rises. At a high
enough power, μ reaches the energy corresponding to ωk0,
resulting in an overpopulation of magnons with that frequency
so that the gas is spontaneously divided in two parts, one with
the magnons distributed according to equation (7) and another
with the magnons accumulated in states near the minimum
energy.

While the thermodynamic interpretation of the experi-
ments in [2, 3] is satisfactory and explains qualitatively several
observed features, it fails in providing quantitative results
to compare with data and does not explain the observed
emergence of quantum coherence in the BEC. Here we show
that the cooperative action of the magnon gas through the four-
magnon interaction can provide the mechanism for the onset
of quantum coherence in the BEC. The theory relies in part on
some assumptions based on the experimental observations and
on some approximations to allow an analytical treatment of the
problem. They are ultimately justified by the good agreement
between theory and experimental data.

We assume that, after the hot magnon reservoir is formed
by the redistribution of the primary magnons, the correlation
between the phases of the magnon pairs lasts for a time that can
be as large as 4/ηm, which is about 100 ns in the experiments
of [2–6]. This is sufficient time for the four-magnon interaction
to come into play for establishing a cooperative phenomenon to
drive a specific k mode. The effective driving Hamiltonian for
this process is obtained from equation (4) by taking averages
of pairs of destruction operators of reservoir magnons to form
correlation functions:

H ′(t) = h̄
∑

kR

1
2 SkkR nkR eiϕkR e−i2ωkR t c+

k c+
−k + h.c. (8)

Equation (8) has a form similar to the Hamiltonian (4) for
parallel pumping, revealing that under appropriate conditions
magnon pairs can be pumped out of equilibrium in the
gas. Consider that the population of the primary magnons is
distributed among the NR modes kR in the magnon reservoir,
so that with equation (6) we can write an expression for the
average population of the modes as a function of power p:

nR = rnH [(p − pc1)/pc1]1/2, (9)

where r = rp/NR . The number of magnons in each state
kR can be written approximately as nkR = fBE(ωkR)nR ,
where fBE(ω) = nBE(ω)/CBE, CBE = [∫ nBE dω]/�ωR is
a normalization constant and �ωR = ωp/2 − ωk0. So the
relevant quantity for determining the frequency dependence of
the coefficient in equation (8) is the spectral density G(ω) =
D(ω) fBE(ω) which has a peak at ωk0 that becomes sharper
as the chemical potential rises and approaches the minimum
energy. Thus, as the microwave pumping power increases
and (h̄ωk0 − μ)/kBT becomes very small the peak in G(ω)

dominates the coefficient in equation (8). This establishes a
cooperative action of the modes with ωkR close to ωk0 that can
drive magnon pairs, similarly to the parallel pumping process.
Considering that the pumping is effective for frequencies ωkR

in the range ωk0 ± ηm, one can write an effective Hamiltonian
for driving k0,−k0 magnon pairs as

H ′
eff(t) ∼= h̄(hρ)eff e−i2ωk0 t c+

k0
c+
−k0

+ h.c., (10)

where (hρ)eff = −iG(ωk0)ηmV(4)nR/2 represents an effective
driving field and the factor −i arises from the phase between
pairs that is approximately −π/2 in the range of power
of [2–6]. From the analysis in section 2 one can see that
there is a critical number of reservoir modes above which
they act cooperatively to drive the k0,−k0 magnons. Since
equation (10) has the same form as (3), the population of the
k0 mode driven by the effective field and saturated by the four-
magnon interaction is calculated in the same manner as for
the direct parallel pumping process. From equation (5) with
�ωk = 0 we have

nk0 = [|(hρ)eff|2 − η2
m]1/2/2V(4). (11)

With equations (9) and (11) one can write the population
of the k0 mode in terms of the power p

nk0 = nH [(p − pc2)/(pc2 − pc1)]1/2, (12)

3
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Figure 1. Variation with microwave pumping power of the
normalized number of primary pumped magnons Np, of the BEC
population N0 and of the uncondensed magnons Np − N0.

where pc2 = pc1{1 + 16/[rηmG(ωk0)]2} is the critical power
for the formation of the BEC and is much larger than pc1.
Equation (12) reveals that for p � pc2 the k0 magnons are
pumped-up out of equilibrium as a result of a spontaneous
cooperative action of the reservoir modes and, as will be shown
in the next section, they are in a coherent magnon state.

4. Quantum coherence of the Bose–Einstein magnon
condensate

In order to study the coherence properties of the k0 mode
pumped above threshold one has to use methods of statistical
mechanics appropriate for boson systems interacting with a
heat bath [1, 14]. Using the representation of coherent states
with eigenvalue αk = ak exp(iφk) one can show that the
probability density P(αk) in equation (2) obeys a Fokker–
Planck equation that has a stationary solution:

P(x) = C exp( 1
2 Ax2 − 1

6 x6), (13)

where C is a normalization constant that makes the integral
of the probability density P(x) equal to unity, x =
(2/n2

H n̄k0)
1/6ak represents a normalized magnon amplitude

and the parameter A is given by

A = (2/n2
H n̄k0)

2/3[|(hρ)eff|2 − η2
m]1/2/2V(4)

≡ (2/n2
H n̄k0)

2/3n2
k0

. (14)

From equation (14) we see that, for p < pc2, the
parameter A is negative. In this case P(x) given by
equation (14) behaves as a Gaussian distribution, typical of
systems in thermal equilibrium with incoherent magnon states.
On the other hand, for p > pc2, A > 0 and P(x) consists
of two components, a coherent one convoluted with a much
smaller fluctuation with Gaussian distribution. Since P(x) has
a variance proportional to A−1, for A � 1 it becomes a delta-
like function, characteristic of coherent magnon states [12].
Note that P(x) has a peak at x0 = A1/4, so that it represents
a coherent state with an average number of magnons given by
x2

0 = A1/2. From equation (14) we see that this corresponds
to a magnon number a2

0 which is precisely the value nk0

given by equation (11). This means that the magnons ωk0

driven cooperatively by the reservoir modes are in quantum

Figure 2. Fit of the theoretical result (solid line) to the experimental
data (symbols) of Demokritov and co-workers [4] for the BLS peak
intensity at fmin as a function of microwave pumping power. The
inset shows a fit of theory (solid line) to data (symbols) for the decay
rate of the BLS peak at fmin as a function of microwave pumping
power.

coherent states that have, from equation (12), a small-signal
magnetization m+ ∝ (p − pc2)

1/4. Thus m+ is the order
parameter of the BEC.

The calculations presented so far are valid for magnon
pairs with frequencies and wavevectors in the vicinity of ωk0

and k0,−k0. The dynamics for several modes can be treated
approximately assuming that the condensate consists of pk0

modes all governed by the single-mode equations. As will be
shown later the experimental data are well fitted by this model
with pk0 = 4.4 × 103 which is a very small number compared
to the number of reservoir states NR ∼ 109. Thus we can write
the number of magnons in the condensate as N0 = pk0nk0.

Figure 1 shows the variation with microwave driving
power of the total number of magnons pumped into the system
Np given by equation (6) and the population of the BEC
magnons N0 calculated with equation (12) using parameters
obtained from a fit of theory to data, pk0 = 4.4 × 103 and
rp = 5.0 × 102. Also shown is the number of uncondensed
magnons Np − N0 as a function of p. Clearly the number of
condensate magnons approaches the total number of particles
while the number of uncondensed magnons vanishes as the
power increases above the critical value. This is also a typical
feature of a BEC.

5. Comparison to experimental data

5.1. Brillouin light scattering

In the experiments of [3] the coherence properties of the
excited magnon states emerge clearly in the behaviour of the
intensity of the BLS peak at fmin. As argued in [3], for
incoherent scatterers the BLS intensity is proportional to their
number, whereas for coherent scatterers it is proportional to
the number squared. To compare theory with data we express
the BLS intensity in terms of the microwave power p in two
regimes, p < pc2 and p � pc2. Figure 2 shows a fit to data
using I inc = c1(p − pc1)

1/2 and I coh = c2(p − pc2), with
c1 = 6.7, c2 = 370.0 and pc2 = 2.8 W. As shown in [1] the
parameters are consistent with the values rp = 5 × 102 and
pk0 = 4.4 × 103 used to fit other experimental data.

4
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Figure 3. (a) Microwave emission signal power (μW) versus
pumping power (W). Symbols represent the experimental data of [5]
and the solid line is the fit with theory; (b) microwave emission
signal power versus pumping power. Symbols represent the
experimental data of [6] and the solid line is the fit with theory. The
inset shows the parabolic dependence on the power near the critical
value observed experimentally.

The BLS experiments with short microwave pulses also
provide data on the variation with p of the time decay of the
BLS peak at fmin due to the relaxation of the magnons to the
lattice. As shown in [3] as the microwave power increases
above the critical value pc2 = 2.8 W the decay rate doubles in
a stepwise manner. This fact was interpreted as an indication of
the emergence of coherence of the magnons in the condensed
state. The argument is that, if the nk magnons causing the
scattering are incoherent, the intensity of the BLS peak falls
exponentially in time with the same rate of the magnons.
However, if the magnons are coherent the BLS intensity should
follow n2

k so that its decay rate is twice that of the magnons.
As shown in figure 1 the number N0 of coherent magnons
in the BEC increases with increasing microwave power above
the threshold and approaches the total number Np of magnons
pumped in the system at p ∼ 6 W. At any given power level
the difference Np − N0 represents the number of incoherent
magnons concentrated in a narrow range of frequencies around
fmin, thus contributing to the BLS intensity [1]. Assuming that
the decay rate ηBLS of the BLS peak is a linear combination
of the rates for incoherent and coherent scatterers we can write
ηBLS = 2ηSL[(Np − N0)/Np] + 4ηSL N0/Np, where ηSL is the
spin–lattice relaxation rate of the magnetization and 2ηSL ≈
4 × 106 s−1 is the relaxation rate of the magnon number. The
solid line in the inset of figure 3 represents the theoretical fit to
data [3] using pk0 = 4.4 × 103 and rp = 5.0 × 102.

5.2. Microwave emission

As observed in [5, 6] if the field applied to the YIG film is
such that the frequency of the k ≈ 0 magnon is ω0 = 2ωk0,
a microwave signal with frequency ω0 is emitted by k ≈ 0
magnons created by pairs of BEC magnons k0,−k0 through
a three-magnon confluent process. As shown in [1, 15] using
the total Hamiltonian including driving and three- and four-
magnon interactions, one can obtain the equations of motion
for the magnon operators c0 and ck0. The equations are solved
numerically to give the steady-state magnon populations n0

and nk0 as a function of pumping power. The total average

power radiated by the uniform magnetization precessing about
the static field with frequency ω0 is given by [1, 15] 〈P〉 ∼=
(V 2ω4

0 M2/c3)n′
0, where V is the volume of the emission

region, c is the speed of light and n′
0 = n0/N S. Figure 3

shows fits of the expression ps = Cn′
0 to data. In (a) the

symbols represent the data of [5] and the solid line represents
the fit with using C = 14.3 μW, pk0 = 4.4 × 103 and
pc2 = 4.45 W. In (b) the symbols are the data of [6] using
an incoherent pumping source and the fitting parameters are
C = 1.7 × 104μW, pk0 = 5.0 and pc2 = 1.0 W. The
model reveals the contrasting behaviour of the BEC when the
pumping changes from coherent to incoherent. The low value
of pk0 used to fit the data of [6] indicates that with incoherent
pumping the number of magnons in the system is significantly
smaller than with coherent pumping, thus reducing the number
of states occupied by the BEC. Again the fit of theory to data
is very good.

6. Summary

We have presented a theoretical model for the dynamics of
magnons in a YIG film driven by microwave radiation far
out of equilibrium that provides rigorous support for the
formation of Bose–Einstein condensation of magnons in the
experiments of Demokritov and co-workers [2–6]. The model
relies on the cooperative action of magnons with frequencies
close to the minimum of the dispersion relation through the
nonlinear four-magnon interactions. The theory provides the
basic requirements for the characterization of a BEC, namely:
(a) the onset of the BEC is characterized by a phase transition
that takes place as the microwave power p is increased and
exceeds a critical value pc2; (b) the magnons in the condensate
are in coherent states and, as such, they have nonzero small-
signal transverse magnetization that is the order parameter
of the BEC; (c) for p > pc2 the magnon system separates
into two parts, one in thermal equilibrium with the reservoir
and one with N0 coherent magnons having frequencies and
wavevectors in a very narrow region of phase space. As the
microwave power increases further N0 approaches the total
number of magnons pumped into the system characterizing
unequivocally a Bose–Einstein condensation. The results
of the model fit quite well the experimental data obtained
with Brillouin light scattering and with microwave emission
with consistent values for the various material and fitting
parameters. We note that the theory also applies to the BEC
of magnons in superfluid 3He [16].
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